Moment of Inertia Calculation Triangular Beam Bending About Centroidal Axes

Use the Parallel-Axes Theorem in reverse to find the area moment of inertia of a triangle about its centroid from the area moment of inertia about the baseline based on the previous calculations.

Solution:
Since

$$
\begin{gathered}
I_{x}=I_{x^{\prime}}+A d^{2} \\
\text { then } \\
I_{x^{\prime}}=I_{x}-A d^{2} \\
I_{x^{\prime}}=\frac{1}{12} b h^{3}-\frac{1}{2} b h\left(\frac{h}{3}\right)^{2}
\end{gathered}
$$

And so,

$$
I_{x}=\frac{1}{36} b h^{3}
$$

This is the centroidal area moment of inertia for a triangle.
Note: there are a lot of words in that phrase: "centroidal area moment of inertia for a triangle." You need to be able to have such a phrase roll off your tongue. Take a moment to make sure you understand what each of those words mean. And then take a moment to make sure you understand what b and h are.

