Parallel Axis Theorem

We don't always want to have to integrate. The parallel axis theorem lets us relate the moment of inertia about any axis x to the moment of inertia of the area about an x axis which is parallel to the x axis and goes through the centroid.

$$
I_{x}=I_{x^{\prime}}+A d^{2}
$$

where

- I_{x} is the moment of inertia about your x axis (any axis parallel to the x axis passing through the centroid),
- $\mathrm{I}_{\mathrm{x}^{\prime}}$ is the moment of inertia about the x^{\prime}-axis which is parallel to the x -axis and passes through the centroid,
- A is the area of your shape,
- and d is the perpendicular distance between the x axis and the x^{\prime} axis.

So, for our rectangle above,

- I_{x} would be the moment of inertia about the baseline.

$$
I_{x}=\frac{1}{3} b h^{3}
$$

- $\mathrm{I}_{x^{\prime}}$ would be the moment of inertia about the centroidal x -axis.

$$
I_{x},=\frac{1}{12} b h^{3}
$$

- $\mathrm{A}=\mathrm{b}^{*} \mathrm{~h}$
- $\mathrm{d}=\mathrm{h} / 2$

So

$$
\frac{1}{3} b h^{3}=\frac{1}{12} b h^{3}+b h\left(\frac{h}{2}\right)^{2}
$$

The formula is the same for the moment of inertia about the y axis:

$$
I_{y}=I_{y^{\prime}}+A d^{2}
$$

Note that the smallest moment of inertia for an object is always about its centroidal axes. Since $I_{y}=$ the centroid $+\mathrm{Ad}^{2}$ and since A and d^{2} are always positive, the centroidal moment of inertia must be smallest.

