Moment of Inertia Calculation Area Between Two Curves

Find the moment of inertia for the green shape about the x and y axes. The units shown are in inches; the drawing is not to scale.

Solution:

The vertical dA is used to find I_{y}. The height of this rectangle is $y_{1}-y_{2}$ or $3 x / 4-x^{2} / 2$. The width is $d x$.

$$
\begin{aligned}
& I_{y}=\int x^{2} d A=\int_{0}^{1.5} x^{2}\left(\frac{3 x}{4}-\frac{x^{2}}{2}\right) d x \\
& I_{y}=0.190 \mathrm{in}^{4}
\end{aligned}
$$

The horizontal dA can be used to find I_{x}. The width of this rectangle is $\mathrm{x}_{2}-\mathrm{x}_{1} \operatorname{or} \operatorname{sqrt}(2 \mathrm{y})-4 \mathrm{y} / 3$. The height is dy.

$$
\begin{aligned}
& I_{x}=\int y^{2} d A=\int_{0}^{1.125} y^{2}\left(\sqrt{2 y}-\frac{4 y}{3}\right) d y \\
& I_{x}=0.0763 \mathrm{in}^{4}
\end{aligned}
$$

Note: we had to solve each of the functions for x in terms of y to be able to use this integral. Sometimes this is difficult. It would be great to be able to use the vertical element for finding I_{x}. To do that, integrate dI_{x}. That is, find the moment of inertia for the blue vertical rectangle about the x axis.

The blue rectangle is just a rectangle. So we can use the parallel axis theorem plus $1 / 12 \mathrm{bh}^{3}$ to express the total moment of inertia for the rectangle about the x axis. The parallel axis theorem says that the moment of inertia is the centroidal value $+\mathrm{Ad}^{2}$ where d is the distance from the axis to the centroid (measured perpendicularly from the axis.)
$I_{x} \neq \int y^{2} d A$
$I_{x}=\int d I_{x}=\int\left[\frac{1}{12}\right.$ base \cdot height $t^{3}+$ Area $\left.\cdot d^{2}\right]$ since $d A$ is a rectangle
$d=\frac{x^{2}}{2}+\frac{\text { height }}{2}$ (go from the x axis to the bottom curve $\&$ halfway up)
$I_{x}=\int_{0}^{1.5}\left[\frac{1}{12} d x \cdot\left(\frac{3 x}{4}-\frac{x^{2}}{2}\right)^{3}+d x \cdot\left(\frac{3 x}{4}-\frac{x^{2}}{2}\right) \cdot\left(\frac{x^{2}}{2}+\frac{1}{2}\left(\frac{3 x}{4}-\frac{x^{2}}{2}\right)\right)^{2}\right]$
$I_{x}=0.0763 \mathrm{in}^{4}$

Warning: sometimes students get creative here in trying to figure out how to use the integral $\mathrm{y}^{2} \mathrm{dA}$. Please avoid this.

